研究論文

微量元素の蛍光 X線マッピング精度向上に関する研究

福岡修*1、杉山信之*1、榊原啓介*2

Research on Improving the Accuracy of Fluorescent X-ray Mapping of Trace Elements

Osamu FUKUOKA*1, Nobuyuki SUGIYAMA*1 and Keisuke SAKAKIBARA*2

Research Support Department*1*2

X線集光レンズであるポリキャピラリを利用し、シンクロトロン光を用いてタングステンや銀のパター ン膜の蛍光 X線マッピング分析を行い、検出下限や測定雰囲気による影響について、ポリキャピラリ搭 載の市販分析機器と比較調査を行った。さらに、分光器を用いてシンクロトロン光のエネルギーを最適化 することで蛍光 X線の励起効率が向上し、マッピングの精度が向上するかどうかについて検討を行った。 結果、検出下限を含めた両者の特徴を評価することができ、XAFS(X線吸収微細構造)スペクトルのホワ イトライン近くにエネルギーを設定することによって、さらに検出効率を向上させることができた。

1. はじめに

近年、X線の全反射を利用して集光するポリキャピラ リが開発されたことから、数十µmの空間分解能で元素 マッピング分析が可能となった。ポリキャピラリは市販 の分析機器(以下、ラボ機)だけでなく、シンクロトロン 光利用施設でも導入され、製品中の異物や変色の原因調 査、添加剤の分布、製品の特定箇所の組成分析など、多 様な用途で活用されている^{1),2)}。

ラボ機については、封入管式のX線源を用いる場合が 多く、シンクロトロン光と比較すると輝度が高くないた め、希薄試料の分析に対応できない場合がある。しかし、 基本的には密閉空間で真空やヘリウム雰囲気にできる分 析室を設けており、軽元素分析に対応した仕様となって いる場合が多い。

一方、シンクロトロン光については、高輝度の光を用 いて分析するため、極微量な分析にも対応できる。また、 一般的には分光器によって単色化した光を用いているた め、一次X線のエネルギーを最適化することによって蛍 光収率を上げ、検出下限をさらに向上させる余地がある。 ただし、ビームライン毎に分析対象となる元素の範囲が ある程度決まっており、幅広い元素を対象として組成分 析を実施するのは難しい。

本研究では、これらラボ機とシンクロトロン光の特徴 を具体的な分析結果に基づき調査し、蛍光X線マッピン グ分析に向けて最適な分析機器の利活用の指針策定を目 指す。また、シンクロトロン光については、一次X線エ ネルギーの最適化によって、さらなる検出下限の向上を 目指すことを目的とする。

2. 実験方法

2.1 分析試料の作製

分析試料としては、スパッタ装置(サンユー電子(株) 製 SC-701)を用いて Si ウェハー上にタングステン(W)と 銀(Ag)の単層膜を作製した。成膜時間は W の場合 3 秒 から 5 分、Ag の場合 1 秒から 1 分で設定した。作製し た単層膜はリガク製 SmartLab を用いて X 線反射率測 定を行い、成膜レートを評価した。

さらに、文字を型取ったマスクを施し、同様に膜を 作製した。マスクはレーザーカッター(GCC 社製 GCC Laser Pro)を用いて厚紙に「あ」の文字に穴をあけて作 製した(図 1)。文字の大きさは約 2mm 角とした。

図1 スパッタ膜作製用に用いた紙製マスク (マイクロスコープ像)

2.2 点分析及びマッピング分析

本研究では、ラボ機としてブルカージャパン製 M4 TORNADO PLUS、シンクロトロン光利用施設として あいちシンクロトロン光センターのビームライン BL5S1を用いた。

まず、両機器を用いて各々の検出下限を評価するため 単層膜の点分析を行った。点分析は両機器とも仕様上の 空間分解能が20µmであるポリキャピラリを用いて、計 測時間100秒にて蛍光X線スペクトルの計測を行った。 さらに、同ポリキャピラリを用いて蛍光X線のマッピン グ分析を行った。測定条件は表1のとおりとした。一 次X線については、ラボ機はRhを光源とした白色光、 シンクロトロン光は単色光を用いて分析を行った。分析 ステップ、積算時間については同一条件とした。なお、 測定雰囲気は、ラボ機については真空、シンクロトロン 光については雰囲気制御が困難であるため大気とした。

	ラボ機 (M4TORNADO PLUS)	シンクロトロン光 (ビームライン BL5S1)
一次 X 線	Rh 光源 管電圧 : 30kV 管電流 : 400µA	10247eV(W 膜) 8000eV(Ag 膜)
分析範囲	2.1mm 角	2.1mm 角
分析ステップ	30µm	30µm
積算時間	1ステップ1秒	1ステップ1秒
測定雰囲気	真空(200Pa)	大気

表1 マッピング分析条件

また、シンクロトロン光については、励起効率の向上 を目的として、W 膜の W LⅢ吸収端の蛍光 XAFS スペ クトルを取得し、その結果を参考にして一次X線エネル ギーの条件を選択した。

3. 実験結果

3.1 X線反射率測定結果

単層膜のX線反射率測定結果を図2に示す。成膜時間 1分、3分、5分の試料については20の角度に対して干 渉スペクトルが明確に観測され、膜厚の解析を良好に行 うことができた。解析はソフトウェア GlobalFit を用い て行った。Si ウェハーの上にW 膜がある単純な系でフ ィッティングすることができ、計算結果からWの成膜 レートを1分あたり5.8nm と算出することができた。 また同様に Ag の成膜レートは 1 分あたり 67nm と算出 することができた。

図2 各成膜時間における W 膜の X 線反射率スペクト ル

3.2 点分析結果(検出下限の評価)

図3および図4に、ラボ機を用いてW及びAgの単 層膜から得られた蛍光X線スペクトル(WLa線、AgLa 線)を示す。

図3 各成膜時間における W 膜の W La 線スペクトル (ラボ機で計測)

図4 各成膜時間における Ag 膜の Ag La 線スペクトル (ラボ機で計測)

W 膜については成膜時間 10 秒以下で蛍光 X 線スペクト ルの S/N 比が 0 に近く、今回分析した試料の中では、成 膜時間 30 秒の試料が検出下限となり、膜厚に換算する と 2.9nm、均一分散していると仮定して、濃度に換算 すると 39ppm と評価できた。一方、Ag 膜については成 膜時間 1 秒でも蛍光 X 線スペクトルが検出されたため、 検出下限値の評価はできなかった。

次に、図5にシンクロトロン光を用いてW膜の点分析を行った結果を示す。シンクロトロン光を用いた分析の結果、最も成膜時間が短かった成膜時間3秒の試料についてもS/N比良く蛍光X線スペクトルが得られていることが確認できた。

凶 5 谷成膜时间における W 膜の W La 緑 バイクトル (シンクロトロン光で計測)

また、成膜時間5分の試料でラボ機と比較した結果、 およそ50倍程度のシグナルが得られていることが分か った。従って、シンクロトロン光を用いることによって 少なくとも1桁以上大きな検出効率で測定できることが 分かった。

3.3 マッピング分析結果

図 6 にラボ機、シンクロトロン光両者で測定した W 膜のマッピング分析結果を示す。成膜時間1分の試料で は両者ともにノイズが少なく文字が視認できたのに対し、 成膜時間 30 秒では、ラボ機の方でややノイズが多くな り、成膜時間 10 秒では、同じくラボ機でマッピングし た文字が視認できない程の像になっていることを確認し た。1 点あたりの測定時間は異なるが、マッピングの結 果は図3の点分析の結果にも対応しており、マッピング の限界が、点分析で明らかになった検出下限に近いこと を示唆している。一方、シンクロトロン光を利用した結 果を見ると、ラボ機で視認できなかった成膜時間 10 秒 の試料でもS/N比良く文字が視認できていることが確認 できた。

図7にAg膜のマッピング分析を行った結果を示す。 Ag膜のマッピング分析結果は、W膜の場合と逆転して おり、シンクロトロン光を利用した場合、成膜時間1秒 では文字がほとんど視認できなかったのに対し、ラボ機 ではコントラストは多少悪いものの文字は視認できてい ることが確認できた。これは、測定雰囲気の違いを反映 しており、本研究で利用したシンクロトロン光のビーム ラインでは通常大気中で測定するため、エネルギーが比

図6 W 膜のマッピング分析結果
(左列:ラボ機、右列:シンクロトロン光)

図7 Ag 膜のマッピング分析結果 (左列:ラボ機、右列:シンクロトロン光)

較的低い Ag の La 線を計測する際、検出器に到達する 前に X 線が大きく減衰するためであると考えられる。

3.4 励起効率向上の検討

シンクロトロン光にてさらなる励起効率の向上を目指 し、W 膜の試料を用いて、蛍光収量の XAFS 測定を行 った。図8にW 膜を5分間成膜した試料の XAFS スペ クトルを示す。

図 8 のスペクトルを見ると 10206.5eV 付近でホワイ トラインのピークが見られ、XAFS スペクトルから見た 蛍光収率は、通常の一次X線エネルギーとして選択して いる 10247eV に比べ 3 倍程度になっていることが分か った。本研究では、この 10206.5eV と 10247eV、比較 のために蛍光収率がさらに減少した領域である 15000eV を選択し、各々の条件にてマッピング分析を 行った。図9にその実験結果を示す。

図9より、マッピング像を見ると一次X線エネルギー

図8 W 膜の W L III 吸収端付近の蛍光 XAFS スペクト ル

図9 各一次X線エネルギーにおけるマッピング像 (試料:W成膜時間10秒)

が 10206.5eV の条件で最も鮮明である一方、15000eV の条件で最もノイズが多く見られた。図中矢印で示した 箇所(文字の上と余白の2か所)について、蛍光X線の強 度比を算出した結果を以下の**表2**に示す。

表2 図9の矢印で示した箇所のWLa線のカウント比

一次 X 線エネルギー	カウント比
$10206.5 \mathrm{eV}$	8.9
$10247.0\mathrm{eV}$	3.0
$15000.0\mathrm{eV}$	2.4

表2より、図8で得られた蛍光収率の結果と同様なカ ウント比の違いとなっていることが確認できた。XAFS 測定とマッピング分析を行う試料の化学状態が同じであ ることが前提となるが、蛍光収量のXAFSスペクトルを 取得することによって、マッピング像がより鮮明になる ことを示唆できた。

4. 結び

ラボ機とシンクロトロン光の両者で同一試料(W 膜ま たはAg 膜)のマッピング分析を行い、輝度や測定雰囲気 の違いの影響について調査を行った。分析の結果、W La 線の検出効率としては、ラボ機に対しシンクロトロ ン光は少なくとも1桁以上大きいことが分かった。一方、 3keV付近のエネルギーであるAgのLa線については、 測定雰囲気が大気であるシンクロトロン光よりも真空雰 囲気にできるラボ機の方で検出効率が高いことが分かっ た。

単色化できるシンクロトロン光の一次 X線エネルギー をWのXAFS スペクトルのホワイトラインの位置に設 定することによって、マッピング像がより鮮明になるこ とを示唆できた。

謝辞

本研究の実施にあたり、分析手法の相談および実験の ご協力をいただきましたあいちシンクロトロン光センタ ービームライン担当者の廣友様、野本様に深く感謝申し 上げます。

文献

- Atsushi Bando: Journal of Surface Analysis, 26(1), 34(2019)
- Norie Hirano, Yuji Baba, Tetsuhiro, Sekiguchi, Iwao Shimoyama: *The Japan Society for Analytical Chemistry*, **63**(1), 53(2014)